Unsteady Leakage Flow through Axial Clearance of an ORC Scroll Expander

Panpan SONG, Weilin ZHUGE, Yangjun ZHANG*, Lei ZHANG

Engine Thermofluids Group
State Key Laboratory of Automotive Safety and Energy
Tsinghua University

*Corresponding author : yjzhang@tsinghua.edu.cn
Contents

1. Introduction
2. Methodology
 - Geometric model; Numerical model and solution method
3. Results and discussion
 - Unsteady performance; Effects of radial leakage on flow field
4. Conclusions
Introduction

Classification

Volumetric type
- Scroll
- Screw
- Piston
- Gerotor
- Rotary vane
- Rolling rotor

Velocity type
- Turbine
Introduction

Scroll expander

- High efficiency
- Compact structure
- Low speed
- Low noise
- High reliability

Internal clearance leakage

External leakage

Heat dissipation

Mechanical friction

Efficiency reduction
Introduction

- Interfering with the flows in the upstream/downstream gas chambers
- Reduction of gas expansion capacity in gas chambers
- Increment of the energy losses in gas chambers
Introduction

- Isentropic compressible nozzle flow model
- Compressible adiabatic flow with Fanno flow model
- Incompressible and viscous pipe flow model
- One-dimensional laminar flow model
- Incompressible, viscous and turbulent flow model

- Unsteady behaviors of radial leakage flow
- Influences on the gas flow in working chamber
Contents

1. Introduction
2. Methodology
 - Geometric model; Numerical model and solution method
3. Results and discussion
 - Unsteady performance; Effects of radial leakage on flow field
4. Conclusions
Methodology

- Geometric model of STE

![Overall view](image1.png)

![Cross-section view](image2.png)

 Specifications of scroll compressor

<table>
<thead>
<tr>
<th>Displacement</th>
<th>Speed range</th>
<th>Motor type</th>
<th>Nominal Voltage</th>
<th>Voltage range</th>
</tr>
</thead>
<tbody>
<tr>
<td>34 ml/r</td>
<td>2500~8000rpm</td>
<td>Brushless DC</td>
<td>DC 330V</td>
<td>DC 0~400V</td>
</tr>
</tbody>
</table>
Geometric model of STE

- Constant scroll wrap thickness (basic circle)
- Double arc modification of top profile
Methodology

- Geometric model of STE
 - Point coordinates on the basic circle involute

Inner Involute:
\[
\begin{align*}
x_i &= r_b (\cos \varphi_i + (\varphi_i - \alpha_i) \sin \varphi_i) \\
y_i &= r_b (\sin \varphi_i - (\varphi_i - \alpha_i) \cos \varphi_i)
\end{align*}
\]

Outer Involute:
\[
\begin{align*}
x_o &= r_b (\cos \varphi_o + (\varphi_o - \alpha_o) \sin \varphi_o) \\
y_o &= r_b (\sin \varphi_o - (\varphi_o - \alpha_o) \cos \varphi_o)
\end{align*}
\]

Design parameters: \((r_b, \alpha_i, \alpha_o, \varphi_e, \beta, \gamma)\)
Methodology

Geometric model of STE

<table>
<thead>
<tr>
<th>Parameters</th>
<th>r_b</th>
<th>R_{or}</th>
<th>t</th>
<th>P</th>
<th>α</th>
<th>β</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td>(mm)</td>
<td>(mm)</td>
<td>(mm)</td>
<td>(mm)</td>
<td>(rad)</td>
<td>(rad)</td>
<td>(rad)</td>
</tr>
<tr>
<td>Value</td>
<td>2.39</td>
<td>4.2</td>
<td>3.3</td>
<td>15</td>
<td>0.69</td>
<td>0.373</td>
<td>0.247</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>$\phi_{s, in}$</th>
<th>$\phi_{s, ou}$</th>
<th>ϕ_e</th>
<th>H</th>
<th>D</th>
<th>d_{suc}</th>
<th>d_{dis}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td>(rad)</td>
<td>(rad)</td>
<td>(rad)</td>
<td>(mm)</td>
<td>(mm)</td>
<td>(mm)</td>
<td>(mm)</td>
</tr>
<tr>
<td>Value</td>
<td>3.515</td>
<td>0.373</td>
<td>16.06</td>
<td>24</td>
<td>87.4</td>
<td>6</td>
<td>13.5</td>
</tr>
</tbody>
</table>
Methodology

- Numerical model and solution method

Mesh generation of fluid domain
Methodology

- Numerical model and solution method

Mesh generation of fluid domain

Deformed surface

Orbiting scroll

Undeformed surface

Fixed scroll
Methodology

- **Numerical model and solution method**
 - RNG k-e turbulence model
 - Standard wall function
 - First order backward difference scheme
 - Second order upwind scheme
 - PRESTO (Pressure staggered option) scheme
 - Second order central difference scheme
 - PISO algorithm
Methodology

- Numerical model and solution method

1kW solar-ORC system

Operating condition of STE

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet pressure</td>
<td>MPa</td>
<td>1.1</td>
</tr>
<tr>
<td>Inlet temperature</td>
<td>K</td>
<td>378</td>
</tr>
<tr>
<td>Outlet pressure</td>
<td>MPa</td>
<td>0.3</td>
</tr>
<tr>
<td>Rotating speed</td>
<td>r/min</td>
<td>3200</td>
</tr>
<tr>
<td>Working fluid</td>
<td>-</td>
<td>r245fa</td>
</tr>
</tbody>
</table>

9/25/2017
Results and discussion

- **Expander transient performance**

- Higher mass flow rate
- Lower discharge flow fluctuation
- Different discharge flow capacity
- Reverse discharge flow
Results and discussion

- Expander transient performance

\[F_t = \sum_{i=1}^{n} \left(F_{y,i} \cos \left(\frac{\pi N}{30} t \right) - F_{x,i} \sin \left(\frac{\pi N}{30} t \right) \right) \]

\[M_t = R_{or} \sum_{i=1}^{n} F_{t,i} \]

\[\xi = \sqrt{\frac{1}{N} \sum_{j=1}^{N} (\phi_j - \bar{\phi})^2 / \bar{\phi}} \]

- Smaller gas driving moment
- Smaller fluctuating coefficient
- Effects of discharge flow
Results and discussion

- **Velocity distribution in axial clearances**

 - Radial leakage between *asymmetrical* chambers
 - Radial leakage between *symmetrical* chambers
Results and discussion

- **Velocity distribution in axial clearances**

 - Asymmetric velocity distribution between two axial clearances
Results and discussion

- Pressure distribution in axial clearances

- Pressure gradient at clearance inlet between asymmetric chambers
- Non-uniform pressure in axial clearance along the scroll involute
- Pressure distortion occurs in the downstream of axial clearance
Results and discussion

- Pressure distribution in axial clearances

Top axial clearance
Results and discussion

- Effects of radial leakage in working chambers

- Low pressure region in symmetric working chambers
- Vortices: Leakage flow, fluid viscous force, wall constraint
Results and discussion

- **Effects of radial leakage in working chambers**

 - Stronger vortex flow nearby top axial clearance
 - Pressure distortion in the expansion chambers at the scroll tip and root
Contents

1. Introduction
2. Methodology
 Geometric model; Numerical model and solution method
3. Results and discussion
 Unsteady performance; Effects of radial leakage on flow field
4. Conclusions
Radial leakage flows occur at not only the axial clearances of the scroll segments between *asymmetrical* chambers but also those between *symmetrical* chambers.

Radial leakage flows through the top and bottom axial clearances are *approximately symmetrical* about the meshing line.

Non-uniform pressure distribution in the axial clearance passage exists along the scroll involute direction.

Large pressure distortion occurs in the downstream of the axial clearance between asymmetric working chambers.

Radial leakage flow leads to *secondary vortex flow* and *non-uniform pressure distribution* in working chambers.
Thanks for your attention!
Questions are welcome!

Reporter: Panpan Song
Department of Automotive Engineering
Tsinghua University