LUT
Lappeenranta
University of Technology
Numerical Sensitivity Analysis for Supercritical CO$_2$ Radial Turbine Performance and Flow Field

Alireza Ameli, Antti Uusitalo, Teemu Turunen-Saaresti, Jari Backman
Outline

- Introduction
- Numerical methods & studied case
- Real Gas Properties (RGP)
- Result - Performance
- Result – Flow field
- Extended studies

ORC2017 - alireza.ameli@lut.fi
• Motivation
• Present study
Numerical simulations with ANSYS CFX 17.0
Structured mesh by using Turbo Grid (about 1.4 million cells)
$k – \omega$ SST Turbulence model
Sandia radial turbine (main)*
Boundary conditions: p_t, T_t & p_s, T_s - p_t, T_t & \dot{m}
Unsteady state simulation (Time Transformation)

1. Improved cubic EOS models Peng-Robinson (PR)
2. Soave-Redlich-Kwong (SRK)
3. Span & Wagner (SW)
4. Ideal
Introduction

Numerical methods & studied case

Real Gas Properties (RGP)

Result Performance

Result Flow fields

Extended studies

<table>
<thead>
<tr>
<th>Case name</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω (RPM)</td>
<td>25000</td>
<td>35069</td>
<td>39140</td>
<td>75000</td>
</tr>
<tr>
<td>m (kg/s)</td>
<td>0.973</td>
<td>1.631</td>
<td>1.630</td>
<td>2.58</td>
</tr>
<tr>
<td>T_{11} (K)</td>
<td>421.25</td>
<td>420.75</td>
<td>476.75</td>
<td>810.15</td>
</tr>
<tr>
<td>T_{14} (K)</td>
<td>411.1</td>
<td>403.3</td>
<td>455.3</td>
<td>749.2</td>
</tr>
<tr>
<td>p_{t1} (MPa)</td>
<td>8.284</td>
<td>9.125</td>
<td>9.365</td>
<td>13.5</td>
</tr>
<tr>
<td>τ</td>
<td>1.089</td>
<td>1.203</td>
<td>1.235</td>
<td>1.711</td>
</tr>
<tr>
<td>Δh_i (kJ/kg)</td>
<td>8.6</td>
<td>12.91</td>
<td>17.98</td>
<td>68</td>
</tr>
<tr>
<td>$Z_{in/out}$</td>
<td>0.879/0.876</td>
<td>0.867/0.866</td>
<td>0.923/0.921</td>
<td>1.01/1.005</td>
</tr>
</tbody>
</table>
Introduction

Numerical methods & studied case

Real Gas Properties (RGP)

Result Performance

Result Flow fields

Extended studies

1- Specific entropy
2- Specific enthalpy
3- Speed of sound
4- Specific volume
5- Specific heat at constant pressure
6- Specific heat at constant volume
7- Dynamic viscosity
8- Thermal conductivity
9- Partial derivative of pressure with respect to specific volume at constant temperature.
Introduction

Numerical methods & studied case

Real Gas Properties (RGP)

Result Performance

Result Flow fields

Extended studies

ORC2017 - alireza.ameli@lut.fi

LAPPEENRANTA UNIVERSITY OF TECHNOLOGY
Introduction

Numerical methods & studied case

Real Gas Properties (RGP)

Result Performance

Result Flow fields

Extended studies

CPU time second per time step

Ideal RGP 100 RGP 250 RGP 500

ORC2017 - alireza.ameli@lut.fi
Introduction

Numerical methods & studied case

Real Gas Properties (RGP)

Result Performance

Result Flow fields

Extended studies

CPU time second per rotor rotation

Ideal RGP 100 RGP 250 RGP 500

ORC2017 - alireza.ameli@lut.fi
Introduction

Numerical methods & studied case

Real Gas Properties (RGP)

Result Performance

Result Flow fields

Extended studies

Real gas assumption

Ideal gas assumption

Mach Number in Stn Frame

0.0

ORC2017 - alireza.ameli@lut.fi
Undergoing researches:

- Design a centrifugal compressor with current and modified loss models.

- Sandia Supercritical CO₂ Radial compressor
Efficiency (%) vs Flow coefficient

- Experimental
- CFD
- 1D model

Real Gas Properties (RGP)

Numerical methods & studied case

Introduction

Extended studies

Result Performance

Result Flow fields

ORC2017 - alireza.ameli@lut.fi
Thank you for your attention!