Response time characterization of ORC evaporators for dynamic regime analysis with fluctuating thermal power

The 4th International Seminar on ORC Power Systems

Manuel Jiménez-Arreola – Nanyang Technological University, Singapore
Christoph Wieland – Technische Universität München, Germany
Alessandro Romagnoli – Nanyang Technological University, Singapore

15 September 2017
Milan, Italy
Waste heat recovery
- Stationary sources
- Mobile sources

Exemplary profile of waste heat

Efficiency curve of ORC system
- Design Point
- Off-design condition
- No working zone

- Off-design conditions most of the time: poor efficiency
- Outside operating range: ORC downtimes

Introduction
Dynamic regime analysis
Response time characterization
Case Study
Future work and conclusions
Waste heat recovery
- Stationary sources
- Mobile sources

Exemplary profile of waste heat

Fluctuating thermal power input means that the ORC system often experiences transients

ORC evaporator: link between heat source and rest of components

Dynamics of ORC dominated by heat exchanger transients

Evaporator intrinsic thermal inertia affects the dynamic behavior of the ORC under fluctuating thermal power
ORC evaporator design for dynamic behavior

Standard methodology for heat exchanger design:

- Select type of hex according to application
- Find heat duty Q
- Assume h.t.c. $U \rightarrow$ LMTD
- Calculate heat transfer area A
- Select tube D, thickness, material and calculate # of tubes according to A
- Calculate film coefficients, compare to reqd. U
- Calculate pressure drops Δp and compare to max
- Mechanical design

Include desired dynamic behavior of evaporator:

- Desired thermal inertia of hex

Introduction | Dynamic regime analysis | Response time characterization | Case Study | Future work and conclusions
Dynamic regimes and dynamic regime number

Thermal power input

Dynamic regime I
Quasi-steady

Dynamic regime II
Transient

Dynamic regime III
Quasi-constant

Heat input

Enthalpy increase evap.
Dynamic regimes and dynamic regime number

Define a characteristic response time of the evaporator τ_{ev}

Period of fluctuation of the thermal power T_{load}

Dynamic regime number Γ: ratio of response time to period of load fluctuation

$\Gamma = \frac{\tau_{ev}}{T_{load}}$

How does the design parameters of the hex affect its response time?
Methodology for dynamic characterization

Finite volume 1-D model of evaporator:

For each 1-D cell:

Continuity equation: \(\frac{dM}{dt} = \frac{d(V \cdot \rho)}{dt} = V \cdot \left(\frac{\partial \rho}{\partial h} \frac{dh}{dt} + \frac{\partial \rho}{\partial p} \frac{dp}{dt} \right) = \dot{m}_{in} - \dot{m}_{out} \)

Energy equation: \(V \cdot \rho \cdot \frac{dh}{dt} - V \cdot \frac{dp}{dt} = \dot{m}_{in} \cdot h_{in} - \dot{m}_{out} \cdot h_{out} + \alpha_i \cdot A_{ht} \cdot (T_w - T) \)

Heat balance in wall: \(C_w M_w \frac{dT_w}{dt} = \dot{q}_o \cdot A_{ht} + \alpha_i \cdot A_{ht} \cdot (T - T_w) \)

Heat transfer correlations: 1p – Gnielinski, 2p - Shah
Generalization of results: Dimensionless parameters

Response time as function of dimensionless parameters:

\[
Ja_{lv} = \frac{C_{p,v}(T_v - T_{sat}) + C_{p,l}(T_{sat} - T_i)}{\Delta H_{vap}}
\]

\[
CapR = \frac{\rho_w C_w}{\rho_{tp\ avg} \cdot (\frac{\Delta H_{vap}}{T_{sat}})}
\]

- Geometric ratio(s)
 - 1) Geometry
 - +
 - 2) Fluid thermal state
 - +
 - 3) Wall material

Jakob number: relative ratio of sensible to latent heat transfer

Cap Ratio: ratio of wall heat capacity to a “relative heat capacity of fluid”
Summary of methodology

- Parametrization of τ_{ev} as function of dimensionless parameters
- From parametric points interpolate to build charts with “constant response” time curves
ORC evaporator response time charts

- **Ja = 0.400**
- **Ja = 0.870**

Fixed parameters:
- Area HT = 4m²
- Wall-th = 2mm
- q = 10 kW/m²
- Tsat = 450 K
- Fluid: MM

HEX Geometry

Working fluid thermal state

HEX Wall material

CapR

D/L
ORC evaporator response time charts

If we are interested in a response time slower or faster than 700 s, which area will that be?

The charts show “what it takes” in terms of design to achieve a desired dynamic response

Ja = 0.400

\[\tau_{0.95} < 700 \text{s} \]

\[\tau_{0.95} > 700 \text{s} \]
Dynamic regimes and dynamic regime number

Define a characteristic response time of the evaporator τ_{ev}

Dynamic regime number Γ: ratio of response time to period of load fluctuation

$$\Gamma = \frac{\tau_{ev}}{T_{load}}$$

We know what it takes to design the evaporator for a certain thermal inertia.

To have a desired dynamic regime behavior with a given fluctuating heat input.

Dynamic regime I
Quasi-steady
$\Gamma < 1$

Dynamic regime II
Transient
$1 < \Gamma < 10$

Dynamic regime III
Quasi-constant
$\Gamma > 10$
Case study – Billet reheating furnace waste heat

Discrete Fourier Analysis
Frequency components

T: characteristic period of load (half-wave)
f: frequency component (full-wave)

Response time characterization of ORC evaporators for dynamic regime analysis with fluctuating thermal power

T = 274 s
T = 960 s
T = 2194 s
T = 290 s
T = 290 s
T = 138 s

Introduction
Dynamic regime analysis
Response time characterization
Case Study
Future work and conclusions
Case study – Billet reheating furnace waste heat

We can choose a combination of design variables for a desired dynamic regime depending on our thermal power profile

$$\Gamma = \frac{T_{0.95}}{T}$$
Case study – Billet reheating furnace waste heat

<table>
<thead>
<tr>
<th>Characteristic time $\tau_{0.95}$</th>
<th>Evaporator A</th>
<th>Evaporator B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid</td>
<td>MM</td>
<td>MM</td>
</tr>
<tr>
<td>Heat transfer area</td>
<td>4 m2</td>
<td>4 m2</td>
</tr>
<tr>
<td>D/L</td>
<td>0.0199</td>
<td>0.0022</td>
</tr>
<tr>
<td>Ja_w</td>
<td>41.28</td>
<td>24.92</td>
</tr>
<tr>
<td>Wall material</td>
<td>Steel</td>
<td>Aluminum</td>
</tr>
<tr>
<td>Wall thickness</td>
<td>2 mm</td>
<td>2 mm</td>
</tr>
<tr>
<td>Fluid mass flow</td>
<td>0.25 kg/s</td>
<td>0.25 kg/s</td>
</tr>
<tr>
<td>Sat temperature</td>
<td>177 °C</td>
<td>177 °C</td>
</tr>
<tr>
<td># of parallel tubes</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

$\Gamma = \frac{\tau_{0.95}}{\tau}$

$\Gamma = 3.05$
$\Gamma = 0.38$
$\Gamma = 0.38$
$\Gamma = 2.88$

Evap A

$\Gamma = 0.87$
$\Gamma = 0.87$

Evap B

$\Gamma = 0.46$
$\Gamma = 0.06$

Introduction
Dynamic regime analysis
Response time characterization
Case Study
Future work and conclusions
Case study – Billet reheating furnace waste heat

\[\Gamma < 1 \]
Quasi steady regime

\[1 < \Gamma < 10 \]
Transient regime

\[\Gamma < 1 \] everywhere
Quasi-steady regime
Case study – Billet reheating furnace waste heat

- Evaporator A can effectively filter out some of the variability of the heat
- Less deviation from a design point - “Thermal flywheel”
- Evaporator B reacts faster to changes
Current and future work

- Diameter
- Wall thickness

Consideration of secondary fluid cooling (properties of air)
Step changes of mass flow/temperature

Fig. Finned Tubes (Yang, 2015)

Fig. Louvered Fins (Mastrullo, 2015)
Concluding remarks

- Methodology to include dynamic behavior of ORC evaporator at design stage
- Response time charts as function of design decision variables: geometry, wall material, fluid
- Case study: evaporator selection that can reduce variability of heat
- Very simple geometry – method is to be extended to more realistic and complex geometries

Applications:
- Dampening to decrease inefficiencies of ORC related to off-design conditions
- Feasability of direct evaporation (no thermal oil loop) to reduce size of system on mobile applications
- Design “desired” dynamic behavior of ORC for control
Thank you for your attention!

Q & A

Acknowledgements: This research is part of the ICER collaborative project between NTU Singapore and TUM Germany
Response Time charts

Additional slides
Comparison of resp times for two dif. Fluids with the same fixed parameters. (area, heat flux) → Toluene shows relatively shorter response times
ORC evaporator response time charts

Comparison of response times for two different fluids with the same fixed parameters (area, heat flux) → Toluene shows relatively shorter response times.

If we are interested in a response time slower or faster than 700 s, which are will that be?

The charts show “what it takes” in terms of design to achieve a desired dynamic response.

*Additional slides
Extension to more complex geometries: Finned tubes evaporator

Key parameter to vary: diameter of tubes
- Diameter
- Wall thickness

Investigation of response time, fixed UA, variable D (int)
Case 1: Variable diameter and N serial tubes
Case 2: Variable diameter and N parallel tubes
Case 3: Variable diameter and length
Case 4: “Fixed” int. diameter, variable thickness

Base geometry (Yang, 2015)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N serial tubes</td>
<td>9</td>
</tr>
<tr>
<td>N parallel tubes</td>
<td>20</td>
</tr>
<tr>
<td>Tube length</td>
<td>0.8 m</td>
</tr>
<tr>
<td>Diameter (int)</td>
<td>20 mm</td>
</tr>
<tr>
<td>Wall thickness</td>
<td>2.5 mm</td>
</tr>
</tbody>
</table>

Base thermal boundaries

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass flow flue gas</td>
<td>3 kg/s</td>
</tr>
<tr>
<td>Temperature flue gas</td>
<td>350 °C</td>
</tr>
<tr>
<td>Inlet sub-cooling</td>
<td>10 °C</td>
</tr>
<tr>
<td>Outlet superheating</td>
<td>1 °C</td>
</tr>
<tr>
<td>Working fluid</td>
<td>R245fa</td>
</tr>
<tr>
<td>Evap pressure</td>
<td>30 bar</td>
</tr>
</tbody>
</table>

Same UA means same amount of heat is being transferred for the same inlet conditions of both fluids

*Additional slides
Extension to more complex geometries: Finned tubes evaporator

Additional slides
Extension to more complex geometries: Finned tubes evaporator
Next: comparison of thermal inertia with louvered fins heat exchanger

Finned tubes ORC evap
Base geometry - Yang, 2015

Louvered fins ORC evap
Base geometry - Mastrullo, 2015

Comparison variables:
- N parallel tubes – N tubes
- N serial tubes – Length
- Length – N ports
- Thickness - Thickness

Compare to the same boundary conditions

- Convenient, both papers take practically the same values of mass flow and temperature of the heat source
- How to compare geometries?
 - Hydraulic diameter - very different ranges, characteristics
 - Equivalent “macro” dimensions: Aspect ratio of gas side path

*Additional slides
Louvered fins evaporator – dynamic characterization with changes in geometry and step change in gas mass flow

*Additional slides