Influence of the pinch-point-temperature difference on the *Preheat-parallel* CHP configuration

Sarah Van Erdeweghe – KU Leuven/EnergyVille

ORC, Milan, September 13th, 2017
Problem statement – geothermal power plant

Electricity from deep-geothermal energy

- Renewable & sustainable
- Constant power output, independent of the weather conditions
 ➞ baseload
 ⇐ PV/wind

Problem statement – feasibility?

Geothermal conditions NW Europe (Belgium)

- Thermal gradient: 30°C/km
- Low brine temperature: T=130°C
- High drilling costs
 >50% of total costs

- Pure electrical power plant not economically feasible

- Improve plant economics via CHP
- Potential of Preheat-parallel CHP layout
Preheat-parallel CHP configuration

- Combination of series and parallel CHP layouts
- Preheating-effect

Diagram:

- District heating Heat exchanger 1
- ORC
- District heating Heat exchanger 2

Flow:
- Cold source
- Water return 50°C
- Hot source 130°C 194kg/s
- Water supply 75°C

Heat and Electricity:
- HEAT
- ELECTRICITY
Goals

- Preheat-parallel CHP plant performance
- Effect of pinch-point-temperature difference
- Preheat-parallel versus series and parallel CHPs
- Maximization of net electrical power output
 \[\dot{W}_{net} = \dot{W}_t \eta_g - \dot{W}_p / \eta_m - \dot{W}_{wells}, \quad \dot{W}_{wells} = 600 kW \]
- Comparison based on exergetic plant efficiency
 \[\eta_{ex} = \frac{\dot{W}_{net} + \dot{E}x_{DH}}{\dot{E}x_{b,prod}} \]
- Model implementation: Python + CasADi/IpOpt + REFPROP
Preheat-parallel: Performance

75/50 DH system, \(\dot{Q}_{DH} = 6 \text{MWth} \)

\(\dot{W}_{net} = \dot{W}_t \eta_g - \frac{\dot{W}_p}{\eta_m} - \dot{W}_{wells} = 5.14 \text{MW}_e \)

\(\eta_{ex} = \frac{\dot{W}_{net} + \dot{E}_{x_{DH}}}{\dot{E}_{x_{b, prod}}} = 38.31\% \)

\(\Leftrightarrow \text{Pure power plant:} \ \dot{W}_{net} = 5.58 \text{MW}_e \ \& \ \eta_{ex} = 35.73\% \)

Diagram:

- Cold source
- Heat exchanger 1
- District heating
- Heat source 130°C
- 194kg/s
- Water return 50°C
- Water supply 75°C
- ORC
- Heat exchanger 2
- District heating
- HEAT

\(\dot{W}_t = 3.09 \text{MWth} \)

\(\dot{W}_p = 2.91 \text{MWth} \)

24/09/2017
Preheat-parallel: Influence of ΔT_{pinch} on performance

75/50 DH system, $\dot{Q}_{DH} = 6\text{MWth}$

$\dot{W}_{\text{net}} \downarrow$ with ΔT_{pinch}

preheating-effect \downarrow with ΔT_{pinch}
Preheat-parallel: Influence of ΔT_{pinch} on operating conditions

75/50 DH system, $\dot{Q}_{DH} = 6\text{MWth}$

For $\Delta T_{\text{pinch}} \uparrow$
- $T_{b,\text{ORCout}} \uparrow$
- $T_{\text{mid}} \downarrow$ \(\Rightarrow\) keep $m_{b,\text{ORC}}$ high
- $T_{\text{evap}} \downarrow$
- $T_{b,\text{inj}} \uparrow$
Preheat-parallel: Influence of ΔT_{pinch} on operating conditions

75/50 DH system, $\dot{Q}_{DH} = 6$ MWth

For $\Delta T_{\text{pinch}} \uparrow$
- $T_{b,\text{ORCout}} \uparrow$
- $T_{\text{mid}} \downarrow$ \Rightarrow keep $m_{b,\text{ORC}}$ high
- $T_{\text{evap}} \downarrow$
- $T_{b,\text{inj}} \uparrow$

For $\Delta T_{\text{pinch}} \uparrow$
- $m_{b,\text{ORC}} \downarrow$ to satisfy heat demand
- $m_{\text{wf}} \downarrow$ due to lower heat addition to ORC

24/09/2017
Preheat-parallel: Influence of the heat demand

75/50 DH system

For $\dot{Q}_{DH} \uparrow$, the preheating-effect \uparrow but $\dot{W}_{net} \downarrow$
Preheat-parallel: Influence of the return temperature

75/50 and 75/35 DH system, $\dot{Q}_{DH} = 6\text{MWth}$

For $T_{\text{return}} \downarrow$, $\dot{W}_{net} \uparrow$ and preheating-effect \uparrow
Preheat-parallel versus series

- **Preheat-parallel CHP**
 - Higher \dot{W}_{net} and η_{ex} than series CHP
 - Less sensitive to $\dot{W}_{\text{net}} \downarrow$ with ΔT_{pinch}
 - Highest gains for low \dot{Q}_{DH} and low T_{return}

Graphs

- **75/50 DH system**
- **75/35 DH system**
Preheat-parallel versus parallel

- **Preheat-parallel CHP**
 - Higher \dot{W}_{net} and η_{ex} than parallel CHP
 - More/equally sensitive to \dot{W}_{net} ↓ with ΔT_{pinch}
 - Highest gains for high \dot{Q}_{DH} and low T_{return}

75/35 DH system

75/50 DH system

- $\dot{Q}_{OH} = 3\text{MW}$
- $\dot{Q}_{OH} = 6\text{MW}$
- $\dot{Q}_{OH} = 9\text{MW}$
Preheat-parallel versus series and parallel CHPs

- The preheat-parallel CHP has:
 - Higher \dot{W}_{net} and η_{ex} for investigated conditions
 - Brine: 130°C & 194kg/s & DH system: 75/50 and 75/35
 - Higher gains for low T_{return}
 - Highest sensitivity towards variations in ΔT_{pinch}

 Series > Preheat-parallel > Parallel

- Versus series
 - Highest gain for low \dot{Q}_{DH}

- Versus parallel
 - Highest gain for high \dot{Q}_{DH}
Conclusions – *Preheat-parallel* CHP

Performance
- 75/50 DH system & $\dot{Q}_{DH} = 6\text{MWth} \rightarrow \dot{W}_{net} = 5.14\text{MWe} & \eta_{ex} = 38.31\%$
- pure power plant $\eta_{ex} = 35.73\% \rightarrow$ better utilization of low-T geoth. source!

Effect of ΔT_{pinch} on
- Performance: \dot{W}_{net} ↓ and η_{ex} ↓ with ΔT_{pinch}
- Optimal operating conditions

Preheat-parallel favorable when
- Large $T_{\text{supply}} - T_{\text{return}}$, Low T_{return}
- Higher \dot{Q}_{DH}

Preheat-parallel better than series and parallel CHP (for considered conditions)
Influence of the pinch-point-temperature difference on the Preheat-parallel CHP configuration

Sarah Van Erdeweghe – KU Leuven/EnergyVille
sarah.vanerdweghe@kuleuven.be

Thanks for your attention!