Non-ideal effects on the typical trailing edge shock pattern of ORC turbine blades

D. Vimercatia,c, G. Goria,c, A. Spinellib,c and A. Guardonea,c

Politecnico di Milano - Italy
a Department of Aerospace Science and Technology
b Energy Department
c CREA Lab
MOTIVATIONS

ORC attractive features
- Adaptability to various (low temperature) heat sources
- Lower complexity wrt steam cycle
- Turbine technical advantages wrt steam turbine (lower rmp, lower pressures, no erosion)
- High flexibility
- …

ORC challenges
- Choice of suitable working fluid
- Transient phenomena
- Complex thermodynamic modelling of the working fluid
- Heat exchangers and turbine design
- …
MOTIVATIONS

ORC attractive features
- Adaptability to various (low temperature) heat sources
- Lower complexity wrt steam cycle
- Turbine technical advantages wrt steam turbine (lower rmp, lower pressures, no erosion)
- High flexibility
- …

ORC challenges
- Choice of suitable working fluid
- Transient phenomena
- Complex thermodynamic modelling of the working fluid
- Heat exchangers and turbine design
- …
MOTIVATIONS

ORC turbine

- Typically few stages (often one only)
- High pressure ratio

- Design expansion through the non-ideal regime: low values of the speed of sound → highly supersonic flow
- Shock waves: fish-tail shocks, post-expansion, off-design
- Large contribution of inviscid loss to total loss

Research question

How do non-ideal effects across oblique shocks impact on the design of ORC turbines?
➔ Introduction: NICFD

➔ Methodology

➔ Oblique shocks in the non-ideal flow regime

➔ Application: oblique shocks in siloxane MDM

➔ Discussion and concluding remarks
Non-Ideal Compressible Fluid Dynamics

\[P_v \neq RT \]

Features
- Subject: dense vapours, supercritical fluids, two-phase compressible flows
- Compressibility
- Phase transition
- Critical point

Application
- ORC
- Supercritical CO\(_2\)
- Refrigeration
- Oil & Gas compression/expansion
- ...

Fluid: MDM (RefProp)
INTRODUCTION

Non-Ideal Compressible Fluid Dynamics

\[P v \neq RT \]

Measure of non-ideality in compressible flows:

The fundamental derivative of gasdynamics (Thompson 1971)

\[\Gamma = 1 + \frac{\rho}{c} \left(\frac{\partial c}{\partial \rho} \right)_s = 1 + \frac{\rho}{c} \left(\frac{\partial^2 P}{\partial \rho^2} \right)_s = \frac{v^3}{2c^2} \left(\frac{\partial^2 P}{\partial v^2} \right)_s \]

Gasdynamic regimes

- \(\Gamma > 1 \) Ideal regime
- \(\Gamma < 1 \) Non-Ideal regime
 - \(0 < \Gamma < 1 \) Non-Ideal classical regime
 - \(\Gamma < 0 \) Non-Classical regime

Fluid: MDM (RefProp)
Rankine-Hugoniot relations

\[h_A - \frac{1}{2} P_A (v_A + v_B) = h_B - \frac{1}{2} P_B (v_A + v_B) \]

\[\sqrt{-\frac{(P_B - P_A)}{(v_B - v_A)}} = \rho_A |u_A| \sin \beta \]

\[\rho_A \tan \beta = \rho_B \tan (\beta - \theta) \]

\[|u_A| \cos \beta = |u_B| \cos (\beta - \theta) \]

Admissibility conditions

\[s_B > s_A \]

\[\left(M_{nB} = \frac{|u_{nB}|}{c_B} < 1 < \frac{|u_{nA}|}{c_A} = M_{nA} \right) \]
Deflection shock polars: X-θ diagrams for fixed upstream state

Shock angle polar

Mach number polar

A – Mach wave (acoustic limit)
N – normal shock

D – detachment point (max deflection)
S – downstream sonic point
Perfect-gas: explicit formulas

\[\tan \theta = \frac{2}{\tan \beta} \left[\frac{M_A^2 \sin^2 \beta - 1}{M_A^2 (\gamma + \cos 2\beta) + 2} \right] \]

\[\frac{\rho_B}{\rho_A} = \frac{(\gamma + 1)M_A^2 \sin^2 \beta}{2 + (\gamma - 1)M_A^2 \sin^2 \beta} \]

\[\frac{P_B}{P_A} = 1 + \frac{2\gamma}{\gamma + 1} (M_A^2 \sin^2 \beta - 1) \]

\[M_B^2 = \frac{1}{\sin^2 (\beta - \vartheta)} \frac{1 + \frac{\gamma - 1}{2} M_A^2 \sin^2 \beta}{\gamma M_A^2 \sin^2 \beta - \frac{\gamma - 1}{2}} \]

Dependencies:
- Deflection angle \(\vartheta \)
- Upstream Mach number \(M_A \)

No dependence on the upstream thermodynamic state (e.g. \(P_A, \rho_A \))
Non-ideal regime: acoustic limit

\[\beta = \sin^{-1}(1/M_A) + \frac{\Gamma_A}{2} \frac{M_A^2}{M_A^2 - 1} \vartheta + O(\vartheta^2) \]

\[\frac{\rho_B}{\rho_A} = 1 + \frac{M_A \Gamma_A}{\sqrt{M_A^2 - 1}} \vartheta + O(\vartheta^2) \]

\[\frac{P_B}{P_A} = 1 + \frac{\rho_A c_A^2}{P_A} \frac{M_A \Gamma_A}{\sqrt{M_A^2 - 1}} \vartheta + O(\vartheta^2) \]

\[M_B = M_A + \left(1 - \Gamma_A - \frac{1}{M_A^2}\right) \frac{M_A^3}{\sqrt{M_A^2 - 1}} \vartheta + O(\vartheta^2) \]

Dependences:
- Deflection angle \(\vartheta \)
- Upstream Mach number \(M_A \)
- Upstream thermodynamic state (e.g., \(P_A, \rho_A \))
APPLICATION: OBLIQUE SHOCKS IN MDM

Parametric study

- Fluid: siloxane MDM (RefProp)
- Fixed upstream entropy in the non-ideal thermodynamic regime ($\Gamma < 1$)
- Fixed upstream Mach number ($M_A = 2$)
\[\beta = \sin^{-1}(1/M_A) + \frac{\Gamma_A}{2} \frac{M_A^2}{M_A^2 - 1} \theta \]

dependence on the upstream tmd state through \(\Gamma_A \)

- Acoustic limit:
- Strong dependence of the detachment angles on the upstream tmd state

\[\beta = \sin^{-1}\left(\frac{1}{M_A}\right) + \frac{\Gamma_A}{2} \frac{M^2_A}{M^2_A - 1} \vartheta \]

- Acoustic limit:
- Strong dependence of the detachment angles on the upstream tmd state.
APPLICATION: OBLIQUE SHOCKS IN MDM

$M_B - \theta$ Diagram

- Acoustic limit:

$$M_B = M_A + \left(1 - \Gamma_A - \frac{1}{M_A^2}\right)\frac{M_A^3}{\sqrt{M_A^2 - 1}}\theta$$

dependence on the upstream tmd state through Γ_A

- Non-ideal oblique shocks (Mach number increasing):

$$\Gamma_A < 1 - \frac{1}{M_A^2}$$

for small deviations
APPLICATION: OBLIQUE SHOCKS IN MDM

$P_B^t/P_A^t - \vartheta$ Diagram

- Fixed $\vartheta \rightarrow$ non-monotonic variation of the shock loss with the upstream pressure
- Larger shock loss across strong oblique shocks w.r.t perfect-gas case
- Smaller shock loss across weak oblique shocks w.r.t perfect-gas case for low values of Γ_A
Further parametric study

- Same fluid, same isentrope, $M_A = 1.5$

- Non-ideal oblique shocks (Mach number increasing): lower threshold on the upstream Mach number

$$M_{A,\text{min}} = 1/\sqrt{1 - \Gamma_{A,\text{min}}}$$
Extension to other fluids

- Same qualitative behaviour expected for most moderate-to-high molecularly complex fluids

- Qualitatively similar thermodynamic topology of the fundamental derivative of gasdynamics

\[
\Gamma
\]

\[
v/v_c
\]
Extension to other fluids

- Non-ideal oblique shocks (Mach number increasing): lower threshold on the upstream Mach number
 \[M_{A,\text{min}} = \frac{1}{\sqrt{1 - T_{A,\text{min}}}} \]

- Total conditions for non-ideal oblique shocks may exceed thermal stability limit

Example: minimum \(P^t \) and \(T^t \) for non-ideal oblique shocks along isentrope tangent to VLE

<table>
<thead>
<tr>
<th>Fluid</th>
<th>(P_{\text{min}}^t) [bar]</th>
<th>(T_{\text{min}}^t) [°C]</th>
<th>(T_{\lim}^t) [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDM</td>
<td>16.55</td>
<td>299.0</td>
<td>(\sim 290 \div 300)</td>
</tr>
<tr>
<td>MM</td>
<td>25.90</td>
<td>262.0</td>
<td>(\sim 300)</td>
</tr>
<tr>
<td>Toluene</td>
<td>74.00</td>
<td>355.0</td>
<td>(\sim 400)</td>
</tr>
<tr>
<td>Isopentane</td>
<td>64.80</td>
<td>221.0</td>
<td>(\sim 290)</td>
</tr>
<tr>
<td>Cyclopentane</td>
<td>97.30</td>
<td>280.7</td>
<td>(\sim 275)</td>
</tr>
<tr>
<td>R245fa</td>
<td>107.77</td>
<td>204.0</td>
<td>(\sim 300)</td>
</tr>
</tbody>
</table>
CONCLUSIONS

- Oblique shock waves were investigated in the non-ideal regime because of their relevance to ORC turbine flows.

- Main results:
 - Shock angle polar shifts to higher deflection angle
 - Appearance of Mach number-increasing oblique shocks (non-ideal oblique shocks)
 - Shock loss: larger across strong oblique shocks, possibly smaller across weak oblique shocks w.r.t. perfect-gas case

- MDM used for explanatory purposes, direct extension to other molecularly complex fluids employed in ORCs

- Highly non-ideal effects at design conditions only for supercritical ORCs
FUTURE WORK

- Numerical investigation on real vanes configurations at design and off-design conditions

- Experimental observation of non-ideal effects across oblique shock waves at TROVA (Test Rig for Organic Vapours), CREALab PoliMi
The research is funded by the European Research Council under the Grant ERC Consolidator 2013, Project **NSHOCK** 617603

Thanks for your attention!

Join the tour of **CREALab**!