Integrated computer-aided working-fluid design and thermoeconomic ORC system optimisation

MT White, OA Oyewunmi, MA Chatzopoulou, AM Pantaleo, AJ Haslam and CN Markides

Clean Energy Processes (CEP) Laboratory
Department of Chemical Engineering
Imperial College London
South Kensington Campus, London, SW7 2AZ, UK
Project aims and objectives

Key challenges in ORC system design:
- Identification of optimal working fluids
- Development of optimised systems based on thermoeconomic analyses
- Explore novel cycle architectures to enhance system performance

Research aim:
Develop an advanced CAMD-ORC optimisation framework based on SAFT-γ Mie capable of evaluating advanced cycle architectures, system operation parameters and fluids based on thermoeconomic performance indicators

Presentation objectives:
- To introduce computed-aided molecular design (CAMD) within the context of ORC optimisation
- To apply thermoeconomic analysis within a CAMD-ORC framework
Computer-aided molecular design (CAMD)

Group-contribution equation of state

Normal-alkanes

Cyclo-alkanes

Aromatics

Thermodynamic model

Mixed-integer non-linear programming (MINLP) optimisation

• Maximise/minimise objective function
• Integer optimisation variables: working fluid
• Continuous variables: thermodynamic cycle
• Binary variables: cycle architecture
CAMD-ORC model
Group-contribution methods: SAFT-\(\gamma\) Mie

- Molecular-based, free-energy equation of state:

\[
\frac{A(m, \sigma, \lambda, \varepsilon, u^{\text{assoc}})}{NkT} = \frac{A^{\text{ideal}}}{NkT} + \frac{A^{\text{mono.}}}{NkT} + \frac{A^{\text{chain}}}{NkT} + \frac{A^{\text{assoc.}}}{NkT}
\]

Group-contribution methods: Transport properties

- Transport properties \((k, \mu, \sigma)\) are required to size heat exchangers
- Transport properties are not available from SAFT-\(\gamma\) Mie
- Group-contribution methods are sought that are:
 - Applicable to a large range of fluids
 - Suitable for the functional groups used within the CAMD-ORC model
 - Straightforward to implement
- Various methods have been implemented in the CAMD-ORC model (White et al., 2017)
- Critical properties \((T_{cr}, P_{cr}, V_{cr})\) are estimated using Joback and Reid

<table>
<thead>
<tr>
<th></th>
<th>Liquid phase</th>
<th>Vapour phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic viscosity</td>
<td>Joback and Reid ((n\text{-alkanes}))</td>
<td>Reichenberg</td>
</tr>
<tr>
<td></td>
<td>Sastri-Rao ((\text{branched alkanes}))</td>
<td></td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>Sastri</td>
<td>Chung</td>
</tr>
<tr>
<td>Surface tension</td>
<td>Sastri-Rao</td>
<td></td>
</tr>
</tbody>
</table>
ORC thermodynamic modelling

- Simple, sub-critical, non-regenerative ORC systems
- Energy balance applied to main system components (pump, evaporator, expander, condenser)
- Defined heat source and sink (temperature, mass-flow rate and specific-heat capacity)
- Fixed pump and expander efficiencies, η_p and η_e

- ORC variables:
 - Condensation temperature, T_1
 - Reduced evaporation pressure, P_r
 - Evaporator pinch point, PP_h
 - Expander inlet condition parameter, z

- Constraints:
 - Minimum evaporator pinch point, $PP_{h,\text{min}}$
 - Minimum condenser pinch point, $PP_{c,\text{min}}$
 - Condensation pressure cannot be sub-atmospheric
 - Expansion cannot be into the two-phase region
Component sizing

- Evaporator and condenser units selected are of tube-in-tube construction.

- Heat transfer coefficient (HTC) and heat-transfer areas (HTA) as functions of Nusselt numbers.

- Evaporator is split into 3 sections:
 - Preheating section
 - Evaporating section
 - Superheating section

- Condenser is split into 2 sections:
 - Desuperheating section
 - Condensing section

- Each section is discretised spatially to account for changes in working-fluid properties over the length of the heat exchanger.
Component costing

• Pump, pump motor and heat exchangers are costed using the correlations proposed by Seider et al. [1]:

\[C_p^0 = F \exp(Z_1 + Z_2 \ln X + Z_3 \ln(X)^2 + Z_4 \ln(X)^3 + Z_5 \ln(X)^4) \]

• Expander costed using the correlation proposed by Turton et al. [2]:

\[C_p^0 = F10^{(Z_1+Z_2 \log X+Z_3 \log(X)^2)} \]

\[X \quad \text{the sizing attribute (power, heat-transfer area etc.)} \]
\[F, Z_n \quad \text{correlation coefficients} \]

• Costs converted to todays prices using the CEPCI

Optimisation

\[
\text{max } \{ \dot{W}_n(x, y) \}
\]

Subject to:

\[
g(x, y) \leq 0 ;
\]

\[
h(x, y) \leq 0 ;
\]

\[
x_{\text{min}} \leq x \leq x_{\text{max}} ;
\]

\[
y_{\text{min}} \leq y \leq y_{\text{max}}
\]

- CAMD-ORC framework developed in the gPROMS modelling environment
- MINLP optimisation solved using built-in outer approximation algorithm OAERAP
Case study
Definition

- Three heat-source temperatures considered: 150, 250 and 350 °C
- Assumptions for waste-heat recovery case study:

<table>
<thead>
<tr>
<th>\dot{m}_h kg/s</th>
<th>$c_{p,h}$ kJ/(kg K)</th>
<th>T_{ci} °C</th>
<th>\dot{m}_c kg/s</th>
<th>$c_{p,c}$ kJ/(kg K)</th>
<th>η_p</th>
<th>η_e</th>
<th>$PP_{h,min}$ °C</th>
<th>$PP_{c,min}$ °C</th>
<th>$P_{1,min}$ bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>4.2</td>
<td>15</td>
<td>5</td>
<td>4.2</td>
<td>0.7</td>
<td>0.8</td>
<td>10</td>
<td>5</td>
<td>0.25</td>
</tr>
</tbody>
</table>

- Alongside the ORC variables ($T_1, p_r, \Delta T_{sh}, PP_h$) the effect of the number of $>\text{CH}_2$ groups on ORC performance is investigated for four fluid families

<table>
<thead>
<tr>
<th>n-alkanes</th>
<th>methyl alkanes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{CH}_3 - (\text{CH}_2)_n - \text{CH}_3$</td>
<td>$(\text{CH}_3)_2 - \text{CH} - (\text{CH}_2)_n - \text{CH}_3$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1-alkenes</th>
<th>2-alkenes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{CH}_2 = \text{CH} - (\text{CH}_2)_n - \text{CH}_3$</td>
<td>$\text{CH}_3 - \text{CH} = \text{CH} - (\text{CH}_2)_n - \text{CH}_3$</td>
</tr>
</tbody>
</table>

- The aim is to maximize the net power output from a basic ORC system
Thermodynamic results

Increasing heat-source temperature → Increasing system size
Thermodynamic results

150 °C
- n-propane: 35.2 kW
- 2-pentene: 136.7 kW
- 2-hexene: 219.0 kW

250 °C
- n-alkanes
- Methyl alkanes
- 1-alkenes
- 2-alkenes

350 °C
Component sizing results: Heat transfer areas

Increasing heat-source temperature → Increasing system size → Increased HTA
Component sizing results: Heat transfer areas

Maximum power output
Highest heat-transfer area requirements
Component sizing results: 250 °C, \(n \)-alkane

- \(n \)-butane \(C_n = 4 \)
- \(n \)-pentane \(C_n = 5 \)
- \(n \)-hexane \(C_n = 6 \)
Component sizing results: 250 °C, \(n \)-alkane

\(n \)-butane
\(C_n = 4 \)

\(n \)-pentane
\(C_n = 5 \)

\(n \)-hexane
\(C_n = 6 \)

Maximise evaporation pressure \(\rightarrow \) Minimise two-phase heat transfer
Minimise superheating \(\rightarrow \) Minimise vapour heat transfer
Pinch at preheater inlet \(\rightarrow \) Small temperature differences

Maximise power output

Maximum heat-transfer area
Component sizing results: 250 °C, \textit{n}-alkane

Maximise evaporation pressure \implies\ Minimise two-phase heat transfer
More superheating required \implies\ Larger superheater but high ΔT
Pinch at preheater inlet \implies\ Small temperature differences

16% reduction in power output \quad 16% reduction in heat-transfer area
Component sizing results: 250 °C, n-alkane

- **n-butane**
 - $C_n = 4$

- **n-pentane**
 - $C_n = 5$

- **n-hexane**
 - $C_n = 6$

Reduced evaporation pressure \rightarrow More two-phase heat transfer
No superheating required \rightarrow No superheater required
Not pinched at preheater inlet \rightarrow Higher temperature differences

- 13% reduction in power output
- 51% reduction in heat-transfer area
Thermoeconomic results

Increasing heat-source temperature → Increasing system size → Reduced SIC
Thermoeconomic results

- Isobutane: 4.03 £/W
- 2-Pentene: 2.22 £/W
- 2-Heptene: 1.84 £/W

Graphs showing SIC [GBP/W] for n-alkanes, methyl alkanes, 1-alkenes, and 2-alkenes at 150 °C, 250 °C, and 350 °C.
Minimising SIC can identify different optimal working fluids

- **Isobutane**
 - 4.03 £/W
 - $\dot{W}_n = 4.9\%$

- **2-pentene**
 - 2.22 £/W
 - $\dot{W}_n = 0\%$

- **2-heptene**
 - 1.84 £/W
 - $\dot{W}_n = 2.3\%$
Conclusions

- CAMD facilitates an integrated approach to working fluid and ORC system optimisation
- SAFT-γ Mie and group-contribution transport property methods are proven to be suitable for use within a CAMD-ORC framework
- Component sizing and costing models have been implemented within the existing CAMD-ORC framework
- Optimal thermodynamic cycles have large heat-transfer area requirements
- Fluid selection based on SIC identifies different optimal working fluids:
 - 150 °C heat source \rightarrow isobutane SIC = 4.03 £/W
 - 250 °C heat source \rightarrow 2-pentene SIC = 2.22 £/W
 - 350 °C heat source \rightarrow 2-hexene SIC = 1.84 £/W
- This highlights the importance of considering thermoeconomic performance indicators
- **Next steps:** Implement multi-objective optimisation into the CAMD-ORC model
Thank you for listening.

MT White, OA Oyewunmi, MA. Chatzopoulou, AM Pantaleo, AJ Haslam and CN Markides

Corresponding author: c.markides@imperial.ac.uk

Clean Energy Processes (CEP) Laboratory
Department of Chemical Engineering
Imperial College London
South Kensington Campus, London, SW7 2AZ, UK