15 years of innovation and product development results in a market ready product. Triogen ready to tackle international markets (outside EU)

Milestones in the history of Triogen

Founded by Prof. Jos van Buijtenen

- Development work with Lappeenranta University (Finland).

Installation of a demonstration unit at a landfill site in the Netherlands.

Duration tests for 1.5 years.

Yellow & Blue becomes shareholder.

- TU Delft starts turbine development.

First sales in Czech Republic, Italy, and Belgium.

Introduction of WB-1 Vario.

- Development of new turbine nozzle, increasing output.

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>Founded by Prof. Jos van Buijtenen</td>
</tr>
<tr>
<td>2001</td>
<td>Installation of a demonstration unit at a landfill site in the Netherlands.</td>
</tr>
<tr>
<td>2005</td>
<td>Duration tests for 1.5 years.</td>
</tr>
<tr>
<td>2010</td>
<td>Yellow & Blue becomes shareholder.</td>
</tr>
<tr>
<td>2012</td>
<td>First sales in Czech Republic, Italy, and Belgium.</td>
</tr>
<tr>
<td>2015</td>
<td>Development of new turbine nozzle, increasing output.</td>
</tr>
</tbody>
</table>

ORC Development

First Generation ORC: WB 1

- First experimental unit developed.
- The founders of Aan de Stegge Mechanical become shareholder.
- 5 beta-units installed and running.
- Development of standardized unit WB-1.
- First units installed in biomass applications.
- Wadinko becomes shareholder.

New Generation ORC: e-box

- Launch of the “e-box”, Triogen’s next standard, containerized ORC with significantly lower cost.
Triogen’s joint sales efforts with its network of distributors have lead to more than 40 units installed all over Europe.

Triogen ORC installations map across Europe

- Engine application
- Biomass application
+ Sales contacts/Partners

Market Development Stages

- Triogen operates a two-tier sales organization:
 - Direct sales for: new, NL + neighboring markets and fleet owners
 - Distributors cover operational regional markets

- Observations:
 - Consistent pricing to avoid channel conflict
 - Sales partners with ORC experience are welcome, no need for exclusivity

1. Identify markets/applications with attractive business cases
2. Find potential projects direct and mature the opportunity
3. Attract potential distributors based on 1. and 2.
4. Create references by aggressively pursuing first projects
5. Ensure quality projects by substantial technical support / turnkey install by Triogen
6. Train distributors to handle follow up projects more independently
7. Add and expand distributor network
8. Expand application base in the market
The Triogen ORC uses heat that can originate from many sources

Residual or waste heat can be found in

- **Exhaust gases from**
 - gas engines
 - diesel engines
 - gas turbines

- **Various industrial processes**
 - petro-chemical
 - food & dairy
 - base-metal
 - glass, cement, brick manufacturing

- **Combustion of fuels not suitable for use in internal combustion engines and turbines (off-spec fuels)**
 - residuals and waste
 - biomass, wood
 - Flare gas (landfill gas, industrial flares)

Fuelled by fossil fuels or: landfill gas, biogas, bio-diesel, mine gas, sewage gas
Example of the application of the Triogen ORC

Engine application

- **Engine Exhaust Gas**
 - 600 – 1200 kW\(_{\text{heat}}\)
 - 350 – 550 °C

- **ORC Exhaust Gas**
 - 180 - 220 °C

- **Tin**: 35 - 70 °C
- **T\(_{\text{out}}\)**: 55 - 80 °C

- **Gas / Diesel Engines**
 - 1 – 2 MW\(_e\)

- **ORC Power**
 - 80 – 175 kW\(_e\)

- **Condenser Cooling Water**
 - 400 – 700 kW\(_{\text{heat}}\)

The Triogen ORC CHP @ varying condensation (coolant) temperatures
Example of the application of the Triogen ORC

Biomass

- Solid biomass can not be used directly for generation of electricity
- Biomass can be combusted in furnaces and boilers
- Flue gases from furnaces can be fed to an ORC evaporator
- Triogen system can absorb high temperature (< 600 °C) flue gas
- High temperature flue gas heat suitable for conversion into electricity
- Low temperature residual heat is still available for heating and drying purposes
- Five plants in operation/commissioning in Southern and Eastern Europe
- Evaporator with special cleaning device to remove flue gas dust
From the basis of engines in Europe, Triogen is growing into new applications and regions

Market segmentation

Europe

Combustion

- **Boost engine power:** ORC to increase power revenue for engines (natural gas, digester gas, landfill gas, sewage gas, mine gas)

Engines

- **Biomass:** ORC for burners fueled by wood chips, chicken litter, RDF, rice husk

Outside Europe

- **Boost engine efficiency:** ORC to save fuel for engines: off-grid mines, villages, military camps, islands etc.

- **Solutions for waste:** ORC for burners fueled by wood chips, chicken litter, RDF, rice husk

2017

2018/19
Triogen has developed its next standard, the e-box a Highly standardized ORC e-box, based on over 900,000 hours of operational experience

- **Standard 20 ft shipping container**
 - Holds all process equipment except for the heat supply and heat rejection systems

- **Designed to minimize total cost**
 - Parts
 - Production
 - Transport
 - Installation
 - Commissioning
 - Maintenance

- **Furthermore to meet customer requests:**
 - Better pricing
 - Increased robustness
 - Easier installation
 - Simpler user interface

- **The core** (turbo generator, process values, controls etc.) remain unchanged initially

Approach
- Divide the system into groups
- Determine for each component in each group its function
- Determine if this function is necessary, if it can be combined or if it can be achieved in a more cost effective way
Next steps in development for the e-box

Future, component development, First results to be tested Q2 2018

- (increased power up to 200+ kW\textsubscript{e})
 - New turbine blade shapes under development @ TU Delft based on fundamental knowledge developed from government sponsored project
 - Improve electrical generator and inverter @TU Eindhoven on fundamental knowledge developed from government sponsored project
 - New HTG bearing system to further increase robustness and reduce losses

- Next step in containerization
 - Heat supply and heat rejection systems in a second 20 ft shipping container
Questions?

www.triogen.nl