EXERGY’S MAJOR INNOVATIONS AND THEIR PROVEN PERFORMANCES

INDUSTRY PITCH – ORC SEMINAR

Luca Xodo – Head of Business Development
Radial Outflow Turbine

Tosunlar plant: 2 pressure level - single turbine

Umurlu I plant: 12 MW plant

NCG expander

The NOSE CONE
EXERGY

› Supplier of the full ORC cycle, utilising the Radial Outflow Turbine

› 2 factories, Italy and Turkey, manufacturing the Turbine

› Offering added value, resource assessments, financing possibilities, EPC services
THE RADIAL OUTFLOW TURBINE

1. The fluid enters the turbine disk axially in its center.
2. Deviates by 90° in the Nose Cone.
3. Expands radially through a series of stages mounted on the single disk.
4. At the discharge of the last rotor, the fluid flows through a radial diffuser.
5. Is conveyed to the recuperator and/or condensation section of the system, through the discharge volute.

3D cross section of the radial outflow turbine.
THE RADIAL OUTFLOW TURBINE

Why choose a centrifugal (outflow) turbine to expand a fluid?

Efficiency and simplicity!

› **Excellent match** between volumetric flow and the cross section across the radius.
› **No 3D effects** thanks to pressure differential
› **Simpler construction** technology:
 - straight blades
 - multiple stages and pressure on single disk
› **Easy maintenance**
 - removable mechanical group

Only the Radial Outflow Turbine allows multiple pressure admissions on a single disk.
REFERENCES

<table>
<thead>
<tr>
<th></th>
<th>MW</th>
<th># Plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geothermal</td>
<td>335.5</td>
<td>21</td>
</tr>
<tr>
<td>Heat Recovery</td>
<td>22.8</td>
<td>14</td>
</tr>
<tr>
<td>Biomass</td>
<td>2.9</td>
<td>5</td>
</tr>
<tr>
<td>CSP</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>362.2</td>
<td>41</td>
</tr>
</tbody>
</table>

- **Geothermal**: 335.5 MW, 92%
- **Heat Recovery**: 22.8 MW, 7%
- **Biomass**: 2.9 MW, 1%
- **CSP**: 1.0 MW, 0%
PROVEN PERFORMANCE
TOSUNLAR I PLANT
TOSUNLAR I PLANT

4MW 2 PRESSURE LEVELS - 1 TURBINE

FLOW DIAGRAM
TOSUNLAR I PLANT

4MW 2 PRESSURE LEVELS - 1 TURBINE

INLET OF 2 PRESSURE LEVEL STREAMS
TOSUNLAR 1 PLANT

4MW 2 PRESSURE LEVELS - 1 TURBINE

<table>
<thead>
<tr>
<th>RESOURCE TEMPERATURE</th>
<th>105 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>REINJECTION TEMPERATURE</td>
<td>65 °C</td>
</tr>
<tr>
<td>GUARANTEED MWel</td>
<td>3,478</td>
</tr>
<tr>
<td>CORRECTED MWel</td>
<td>↑ 3,850</td>
</tr>
<tr>
<td>PLANT OVER-PERFORMANCE</td>
<td>+ 10,7%</td>
</tr>
<tr>
<td>TURBINE EFFICIENCY</td>
<td>91,69%</td>
</tr>
<tr>
<td></td>
<td>93,65%</td>
</tr>
</tbody>
</table>

Third Party Test by POLITECNICO MILANO 1863
UMURLU I PLANT
UMURLU I PLANT
2 PRESSURE LEVELS - 2 TURBINES 12MW

FLOW DIAGRAM
UMURLU I PLANT
2 PRESSURE LEVELS - 2 TURBINES 12MW
UMURLU I PLANT
2 PRESSURE LEVELS - 2 TURBINES 12MW

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource Temperature</td>
<td>145°C</td>
</tr>
<tr>
<td>Reinjection Temperature</td>
<td>70°C</td>
</tr>
<tr>
<td>Guaranteed MWeL</td>
<td>12</td>
</tr>
<tr>
<td>Corrected MWeL</td>
<td>>13,670</td>
</tr>
<tr>
<td>Overproduction</td>
<td>↑13,9%</td>
</tr>
</tbody>
</table>

Third Party Test by POWER ENGINEERS
THE NCG EXPANDER
THE NCG EXPANDER

MORE EXTRA POWER WITH THE NCG EXPANDER

› Designed to recover additional MW of power from non-condensable gases of the geothermal fluid
› In house design
› Single shippable standard module

ADVANTAGES
Improved performances and profitability of the plant
Resource conditions can change over time, or fail to meet expectations. A quick and inexpensive change to the first stage of the turbine, allows Exergy to better optimize the turbine for the new conditions, recovering some of the lost power.
NOSE CONE

Assumptions:

- Heat exchangers and ACC (NO CHANGE)
- Brine flow rate (824 t / h)

<table>
<thead>
<tr>
<th>Nose Change</th>
<th>Brine Temperature [°C]</th>
<th>Net Power [kWe]</th>
<th>Net power increase [%]</th>
<th>Absolute difference [kWe]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>145</td>
<td>6240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Same turbine</td>
<td>130</td>
<td>4188</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Nose Changed</td>
<td>130</td>
<td>4489</td>
<td>7.2%</td>
<td>301</td>
</tr>
<tr>
<td>Optimized turbine</td>
<td>130</td>
<td>4620</td>
<td>10.3%</td>
<td>432</td>
</tr>
</tbody>
</table>
GREENECO ENERJI, SARAYKÖY 1, TURKEY

YEAR: 2015
APPLICATION: GEO POWER: 12 MW
KARADENIZ HOLDING, UMURLU 1, TURKEY

YEAR: 2015
APPLICATION: GEO
POWER: 12 MW
EDA RENOVAVEIS, PICO ALTO, TERCEIRA (AZORES, PT)

YEAR: 2017
APPLICATION: GEO
POWER: 4 MW
AKÇA ENERJİ
DENIZLI, TURKEY

YEAR: 2014
APPLICATION: GEO
POWER: 4MW
ENEL GREEN POWER
BAGNORE, ITALY

APPLICATION: GEO
YEAR: 2012
POWER: 1MW
Click for video
WASTE HEAT RECOVERY FROM INDUSTRIAL PROCESSES AND POWER STATIONS
GLASS MILL
APPLICATION:
SISECAM
TARGOVISHTE
WASTE HEAT RECOVERY

HEAT RECOVERY SYSTEM FOR TARGOVISHTE GLASS MILL
Waste Heat Recovery

Heat Recovery System for Targovishte Glass Mill

Performance of the Unit

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross El Power</td>
<td>5 MW</td>
</tr>
<tr>
<td>Net El Power</td>
<td>4.7 MW</td>
</tr>
<tr>
<td>Efficiency</td>
<td>22.6%</td>
</tr>
<tr>
<td>Total Thermal Input</td>
<td>21.3 MW</td>
</tr>
<tr>
<td>Exhaust Vol. Flow</td>
<td>270,000 Nm^3/H</td>
</tr>
<tr>
<td>Inlet Temperature</td>
<td>420°C</td>
</tr>
<tr>
<td>Outlet Temperature</td>
<td>200°C</td>
</tr>
<tr>
<td>CAPEX (total)</td>
<td>10,500,000,00 €</td>
</tr>
<tr>
<td>OPEX</td>
<td>100,000,00 €/year</td>
</tr>
<tr>
<td>Operating Hours</td>
<td>8,000h</td>
</tr>
</tbody>
</table>
WASTE HEAT RECOVERY

3D EXAMPLE OF AN ORC HEAT RECOVERY SYSTEM

1 Preheater 2 Evaporator 3 ACC 4 Recuperator 5 Radial outflow Turbine (ROT)
Come to meet us at our booth and turbine exhibition